
FoundationOne[®] CDx Cancer Genomic Profile Product Overview

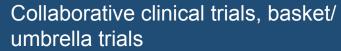
Kosuke Iijima Department Manager of Foundation Medicine Business Department Chugai Pharmaceutical Co., Ltd. 2019/07/04

Transformational Shift in Oncology

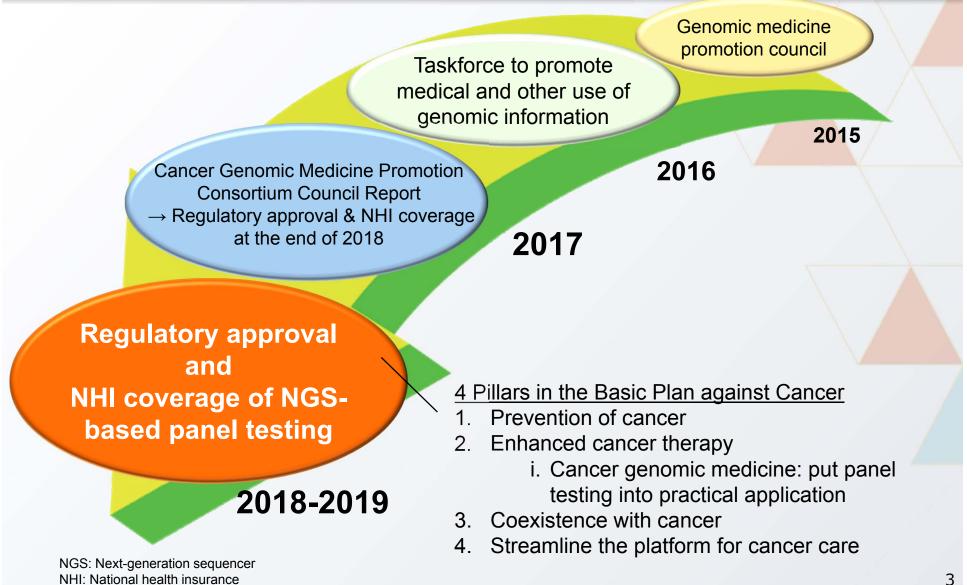
2009

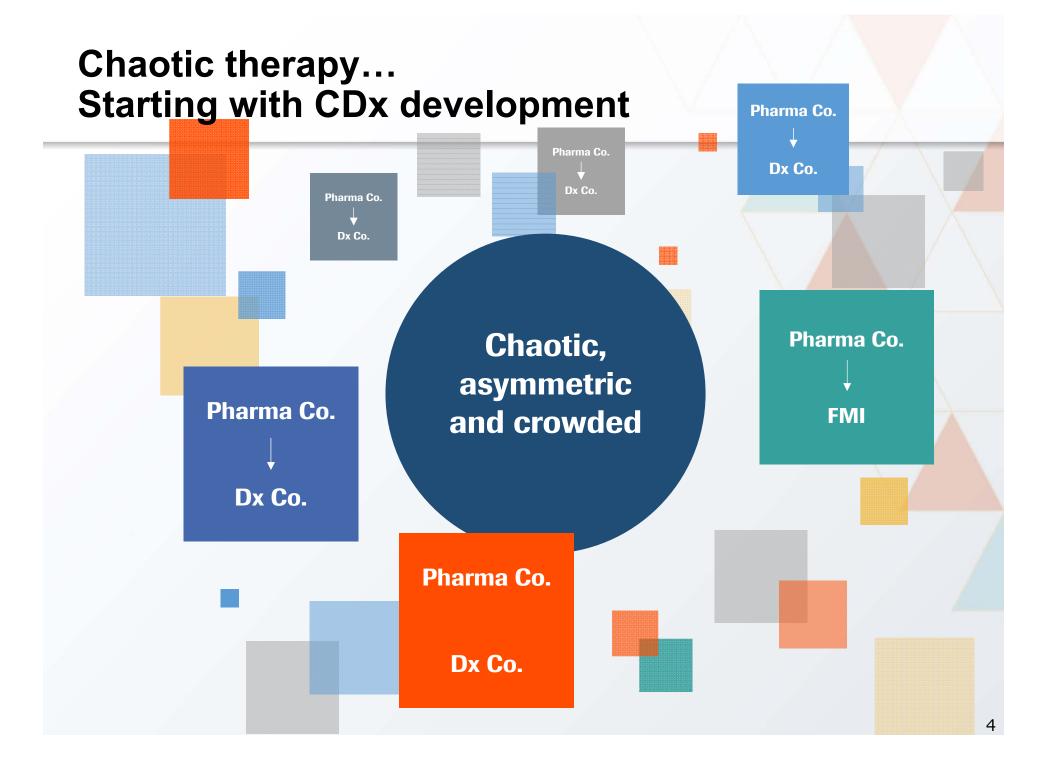
2019

臝


Cancer is an anatomical disease

Clinical trials are conducted solely by


Cancer is a genomic disease


Z academia or a pharmaceutical company

	Few targeted therapy trials	> 600 therapies in development, thousands of clinical trials
\bigotimes	Significant decrease in use of immunostimulants	Rapid adoption of immunotherapies
\odot	Disparate approaches to diagnostic assays	Emergence of comprehensive diagnostic assays

Governmental Activities for Genomic Medicine

Deliver Novel Platform Solution

 Intended Usage or Indications Obtain comprehensive genome profiling with tumor tissues in patients with solid tumors Detect gene alterations to support the assessment of drug indications listed in the table below 				
Alternations	Cancer type	Relevant drugs		
<i>EGFR</i> exon 19 deletions and <i>EGFR</i> exon 21 L858R alterations	Non-small cell	afatinib dimaleate, erlotinib hydrochloride, gefitinib, osimertinib mesylate		
EGFR exon 20 T790M alterations	lung cancer (NSCLC)	osimertinib mesylate		
ALK fusion genes		alectinib hydrochloride, crizotinib, ceritinib		
BRAF V600E and V600K alterations	Malignant melanoma	dabrafenib mesylate, trametinib dimethyl sulfoxide, vemurafenib		
<i>ERBB2</i> copy number alterations (HER2 gene amplification positive)	Breast cancer	trastuzumab (genetical recombination		
KRAS/NRAS wild-type	Colorectal cancer	cetuximab (genetical recombination), panitumumab (genetical recombination)		
NTRK1/2/3 fusion gene	Solid tumors	entrectinib		

FoundationOne CDx Cancer Genomic Profiling

Vismodegib

REPORT DATE 01 Mar 2019

FOUNDATIONONE"CDx	Chugai Unique ID	Lung adenocarcinoma	01 Mar 2019			
			XXXXXXXX			
TIENT	PHYSICIAN	SPECIMEN				
EASE Lung adenocarcinoma	ORDERING PHYSICIAN Not Given	SPECIMEN SITE Not Give				
ME Not Given TE OF BIRTH Not Given	MEDICAL FACILITY Not Given ADDITIONAL RECIPIENT Not Given	SPECIMEN ID Not Given SPECIMEN TYPE Not Give				
EX Not Given NetDicAL FACILITY ID Not Given DATE OF COLLECTION Not Given		Given				
DICAL RECORD # Not Given	PATHOLOGIST Not Given	SPECIMEN RECEIVED Not	Given			
ompanion Diagnostic (CDx)						
ENOMIC FINDINGS DETECTED	APPROVED THER	APEUTIC OPTIONS IN JAPAN				
GFR L858R	Afatinib maleate			Lung adenocarcinoma	BEPORT DATE 01 Mar 2019	
	Erlotinib hydroc	hloride		cong adenocarcinoma	OPF#	
	Gefitinib				XXXXXXXXXXX	
	Osimertinib me	silate			•	
				indings		
				tatus - MS-Stable Ial Burden - TMB-Intermediate (11 M	ats/Mb)	
OTHER ALTERATIONS & BIOMARKERS	IDENTIFIED			dings	A MARK CONC.	
	IDENTIFIED prescriptive or conclusive for labeled use	of any specific therapeutic are	which See	idings e genes anayest, please refer to the Appendix.		
professional services section for addition		or any specific therapeutic pro	Junci See	on, L858R		
Microsatellite Status MS-Stable	PTCH1 T4165					
Tumor Mutational Burden 11 Muts/Mb ⁴	RBM10 0494*			at some with an analytic strength	WEAT ANY	
CDKN2A/B loss ⁵	TP53 R267P			nt genes with no reportable alterations: KRAS, ALK, ERBB2, ROS1		
EGFR amplification ⁵						
				Clinical Senefit 18 Clinica	Trials	
	detection of any copy number alterations, gene rearrang		1.	ack of Response		
Please refer to appendix for Explanation of Clinical Sig	nificance Classification and for variants of unknown sig	mificance (VUS).				
	BIOMARKER	INDINGS	THERAPIES W	VITH CLINICAL BENEFIT THERAPIES WIT NT'S TUMOR TYPE) (IN OTHER	H CLINICAL BENEFIT TUMOR TYPE)	
		ational Burden -	Atezolizun		TUNIOR TYPE)	
		diate (11 Muts/Mb)	Atezolizun	Aveiumat		
			Durvaluma	b Cemiplimab-	rwic	
			Nivolumab			
9 Tr		14	Pembroliza	amab		
	Microsatell	ite status - MS-Stable	No therapi	es or clinical trials. see Biomarker Finding	section	
	GENOMIC FIN	DINGS	THERAPIES W	VITH CLINICAL BENEFIT THERAPIES WIT NT'S TUMOR TYPE) (IN OTHER	H CLINICAL BENEFIT TUMOR TYPE)	
	EGFR - ampli	fication, L858R	Afatinib	Cetuximab		
			Dacomitini	ib Lapatinib		
			Erlotinib	Panitumuma	þ	
			Gefitinib			
	4 Trials see p.	16	Osimertini	ь		
	PTCH1 - T410	55	none	Sonidegib		

S Trials see p. 17

TUMOR TYPE

Lung adopos

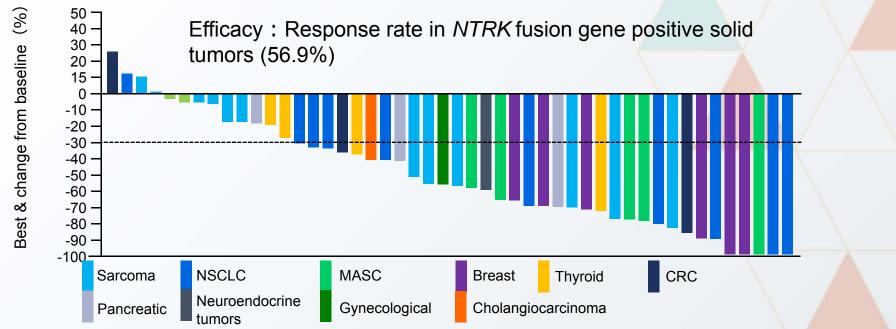
PATIENT Chugai Unique ID

FOUNDATIONONE"CDX

Background information on the patient, the medical facility etc.

Summary of detected alterations

- Approval status of corresponding targeted therapies
- Ongoing clinical trials targeting detected alterations


Summary of references on detected alterations and potential therapies

From Organs to Gene Alterations/Biomarkers

Tumor agnostic approval + *New histology independent medicines*

A U.S. FOOD & I			Search FDA		Q
E Home Food Drugs Med	lical Devices Radiation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
ugs					
lome > Drugs > Drug Approvals an	d Databases > Approved Drugs				
Approved Drugs	FDA grants acc				
lematology/Oncology (Cancer) Approvals & Safety Notifications	pembrolizumation	o for first tiss	sue/site a	agnos	tic
Orug Information Soundcast in Clinical Oncology (D.I.S.C.O.)	f share Y TWEET in LINKEDIN	🎯 PIN IT 🔤 EMAIL 🔒 PRI	NT		
Approved Drug Products vith Therapeutic Equivalence Evaluations Orange Book)	Listen to the FDA D.I.S.C.O. podca On May 23, 2017, the U.S. Food an (KEYTRUDA, Merck & Co.) for adu	nd Drug Administration gran Ilt and pediatric patients with	n unresectable or m	etastatic, mic	rosatellite
	instability-high (MSI-H) or mismatcl treatment and who have no satisfa has progressed following treatment	ctory alternative treatment o	ptions or with MSI-ł	H or dMMR c	
	This is the FDA's first tissue/site-ag	nostic approval.			
		app	s://www.fda.gov roveddrugs/ucm als of Oncology,	560040.htr	

Rozlytrek: The Second Drug in Japan Approved Across All Solid Tumors

Study design

Source: Roche's Virtual Pipeline Event from ESMO 2018

- Phase II, global, multicenter, open-label basket study (STARTRK-2)
- Target: People aged 18 older with <u>NTRK fusion-positive</u>* metastatic or relapse solid tumors. N=51 including 1 Japanese.
- Administer oral entrectinib 600 mg/day
- Primary endpoint: objective response rate (Time Frame: approx. 24 months) * NTRK fusion, positive status was determined with a nucleic acid, based diagnostic test. Foundation of the status was determined with a nucleic acid.
- * *NTRK* fusion–positive status was determined with a nucleic acid–based diagnostic test. FoundationOne CDx Cancer Genomic Profile, confirmed to be equivalent to this diagnostic test, is marketed as a companion diagnostic.

Outcomes

ORR was <u>56.9%</u> (95% CI: 42.3%–70.7%) by INV assessment per RECIST v1.1

Clinically Significant Adverse Reactions

1 Cardiac disorders (4.8%) Cardiac disorders such as cardiac failure, ventricular extrasystoles, and myocarditis may occur. 2 Prolonged QT interval (frequency unknown) 3 Cognitive disorder, ataxia (28.6%) Cognitive disorder, confusional state, mental status changes, memory impairment, hallucinations, ataxia, dysarthria, etc., may occur. 4 Interstitial lung disease (1.6%)

CGP: Comprehensive Genomic Profiling

Which position of usage benefits the patient?

- Finding matched therapy and selecting optimal treatment
- Understanding pathogenesis from clonal evolution

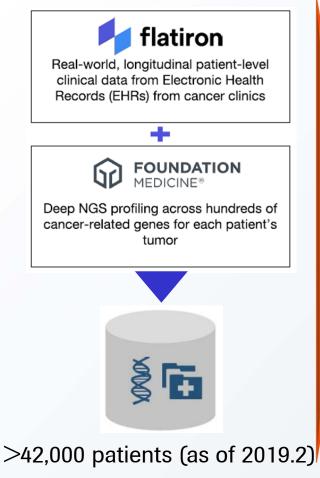
- Understanding pathogenesis including passenger alterations, not only searching for driver alterations
- Understanding pathogenesis from multiple genetic alterations
- Comprehensive treatment plan from biomarkers (TMB, MSI, LOH), etc.

ASCO2019 CSS: Targeting Breast Cancer: Breaking the Code

TP53: Poor prognostic factor but promotes early progression of CDK4/6i

FGFR1: Promotes early progression of CDK4/6i

RB1: Possible CDK4/6i resistant mutation *PTEN loss*: Lowers IC50 of CDK4/6i to promote tolerization


TMB: Tumor Mutational Burden, MSI: MicroSatellite Instability, LOH: Loss of Heterozygosity

PD expected soon after administration of palbociclib

Earlier treatment plan from CGP

Tolerization by enhancement during administration of palbociclib Monitoring of ctDNA CGP 10

Positioning of NGS Panel Test Directly Relates to Use and Quality of Clinico-Genomic DB

Filing with FDA

- U.S. FDA APPROVES IBRANCE[®] (PALBOCICLIB) FOR THE TREATMENT OF MEN WITH HR+, HER2- METASTATIC BREAST CANCER
 - Approval of expanded indication based predominately on real-world data
 - ".... The approval is based on data from electronic health records and postmarketing reports of the real-world use of IBRANCE in male patients sourced from three databases: IQVIA Insurance database, Flatiron Health Breast Cancer database and the Pfizer global safety database."

Access: 28 June, 2019. Note) IBRANCE for male with HR+, HER2- breast cancer is NOT approved in Japan <u>https://www.pfizer.com/news/press-release/press-release-</u> detail/u_s_fda_approves_ibrance_palbociclib_for_the_treatment_of_men_with_hr_her2_metastatic_breast_cancer_1_1

Cancer Precision Medicine

Transform genomic medicine into true precision medicine

Personalized

Health Care

Fit one target to One Organ e.g. Targeted therapies

Genome Medicine

Fit one target to Multiple Organs e.g. Comprehensive Universal diagnostics

Precision Medicine

Focus on Individual patients e.g. Insight and Decision for patients based on Mixed genome and clinical info

Cancer Genomic Medicine — Clinical Implementation and Challenges —

Manabu Muto, M.D., Ph.D., Professor

Therapeutic Oncology Course, Kyoto University Graduate School of Medicine Department of Clinical Oncology, Kyoto University Hospital

COI Disclosure

Presenter:

Manabu Muto

The presenter has the following conflict of interests relating to this presentation.

COI description	<u>Company name, etc.</u>
Directorial/advisory roles:	None
Presentation fees:	None
Manuscript fees:	None
Joint research fees:	Mitsui Knowledge Industry,
	Sysmex Corporation, Riken Genesis

Agenda

- 1. Cancer and Genetics
- 2. Cancer Genomic Medicine in

Healthcare Settings

3. Cancer Genomic Medicine in

Current Clinical Practice

4. Future Challenges in Cancer Genomic Medicine

Cancer Genomic Medicine

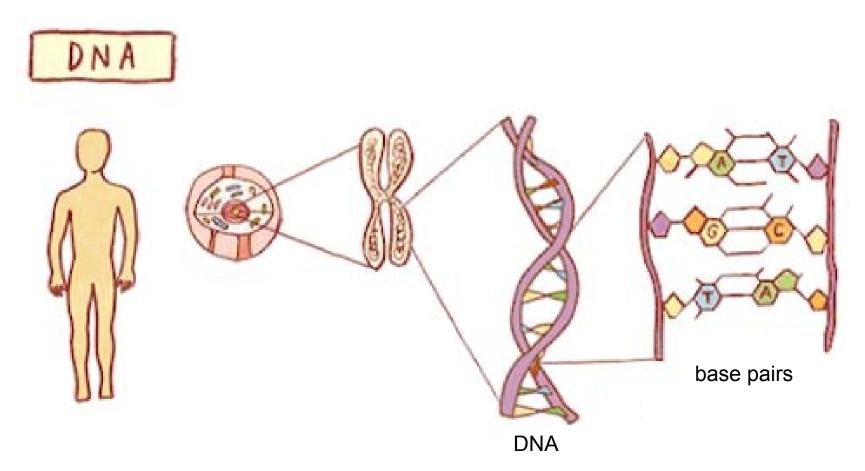
Several years from now, cancer genomic medicine will likely become standard practice.

Precision Medicine

An emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person.

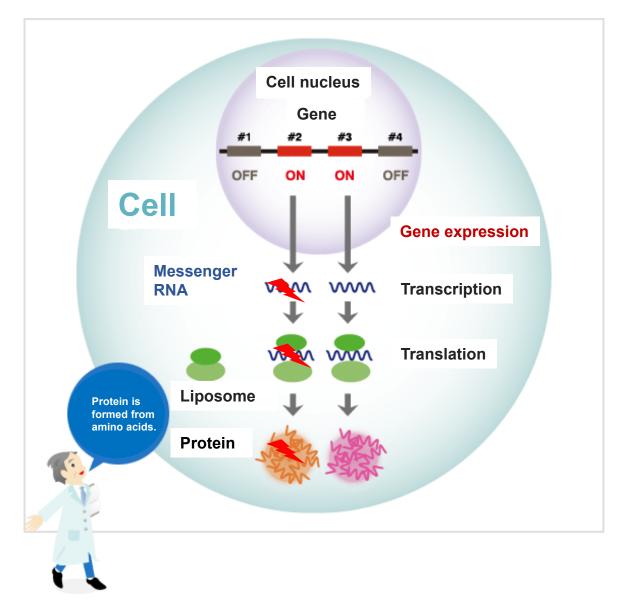
Source: NIH website (as of June 25, 2019)

https://ghr.nlm.nih.gov/primer/precisionmedicine/definition


Cancer Genomic Medicine

Precision medicine in the diagnosis and treatment of cancer

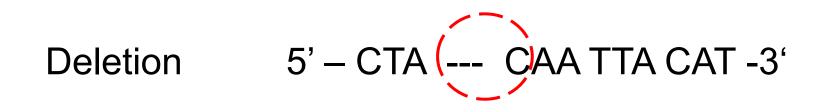
Cancer


Cancer is a disease caused by genetic abnormalities

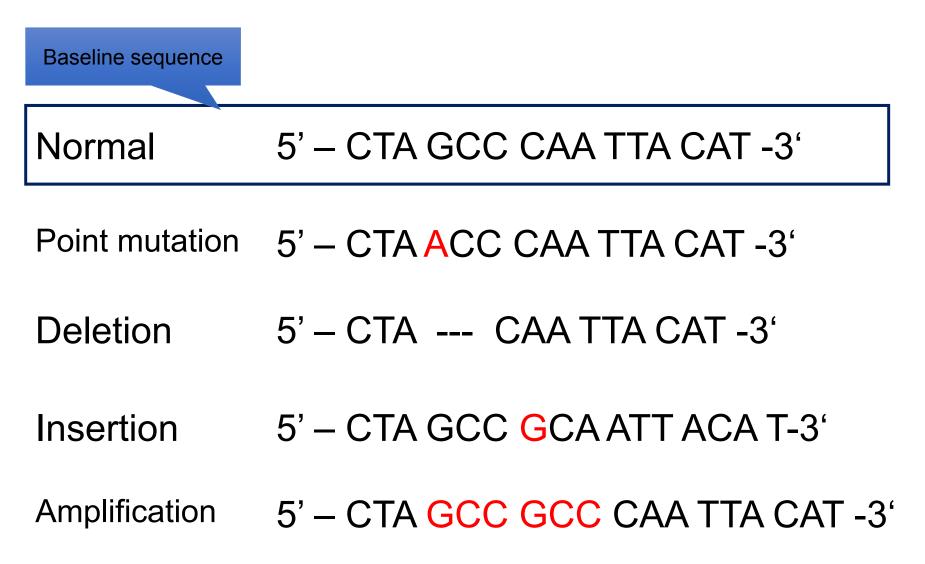
About DNA

DNA is a biological molecule that regulates expression and transfer of genetic information In almost all living things, DNA is the carrier and is the genetic information encoded by its base sequence. Structure and base of DNA

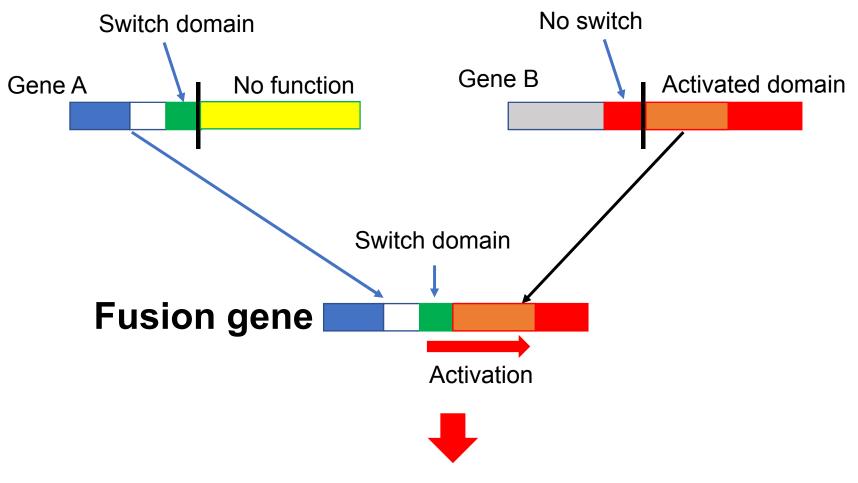
Protein Synthesis from Gene Transcription



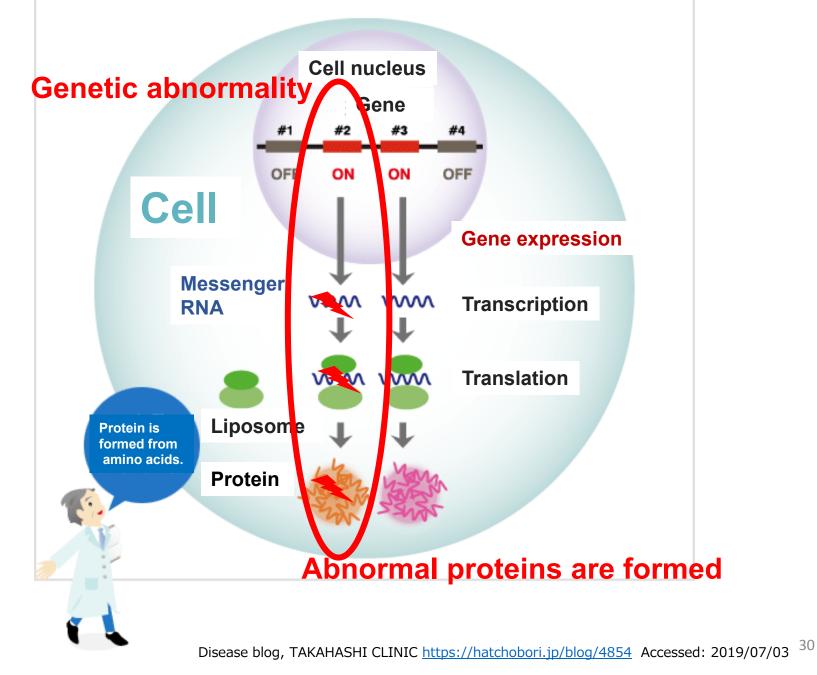
Point mutation 5' – CTA ACC CAA TTA CAT -3'



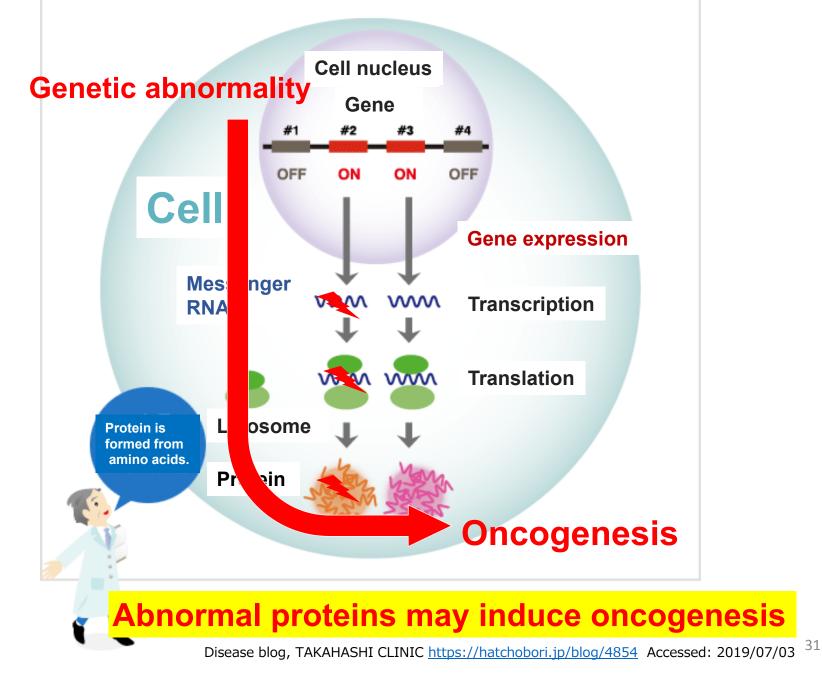
Insertion 5' – CTA GCC GCA ATT ACA T-3'



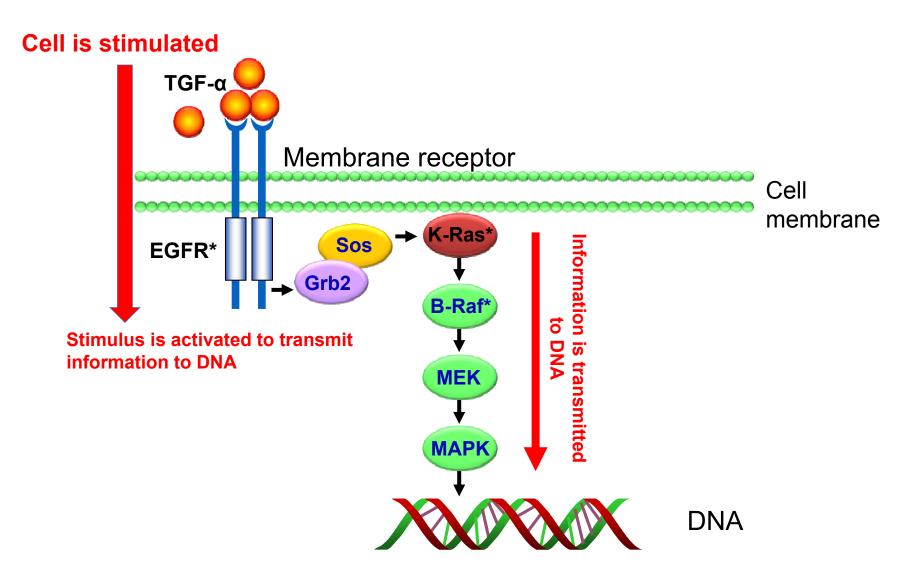
Amplification 5' – CTA GCC GCC CAA TTA CAT -3'


Abnormal Structure of Gene

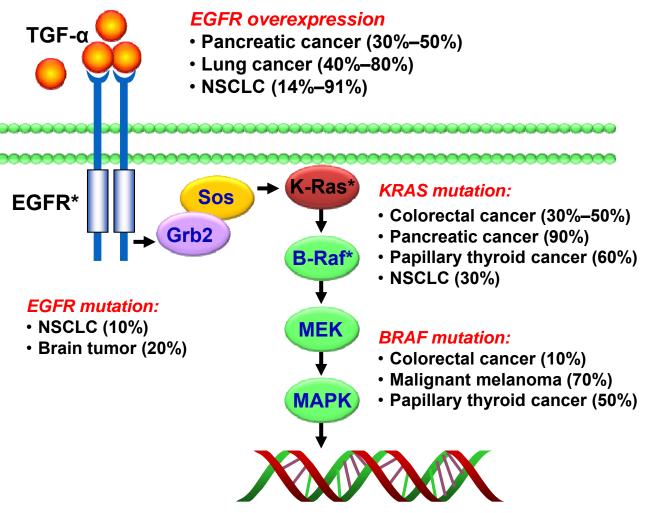
[Conceptual illustration]



Malignant transformation / Increase in proliferation ability


Genetic Abnormalities Cause Abnormal Protein Synthesis

Genetic Abnormalities Cause Abnormal Protein Synthesis


Example: Cell Signaling

Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Roberts PJ, Der CJ., Oncogene 2007

32

Genetic Abnormalities Cause Abnormal Cell Signaling = Oncogenesis

NSCLC: Non-small cell lung cancer

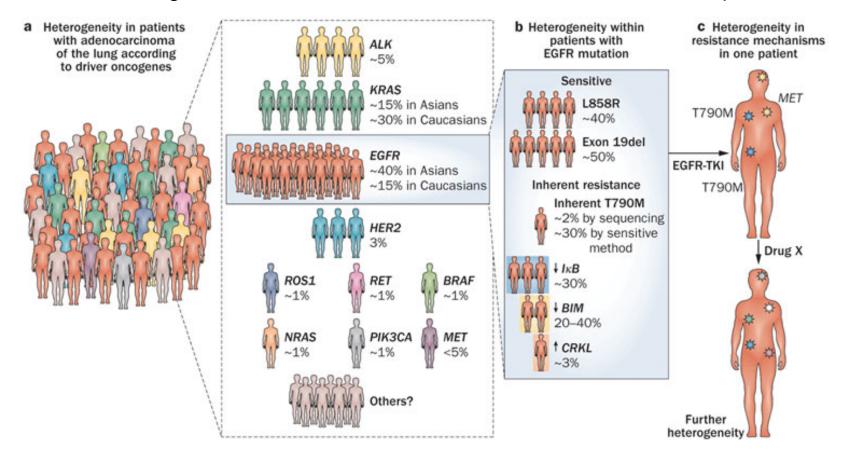
Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.

Gene (genome) abnormalities cause cancer

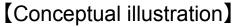
Gene (genome) abnormalities need to be examined

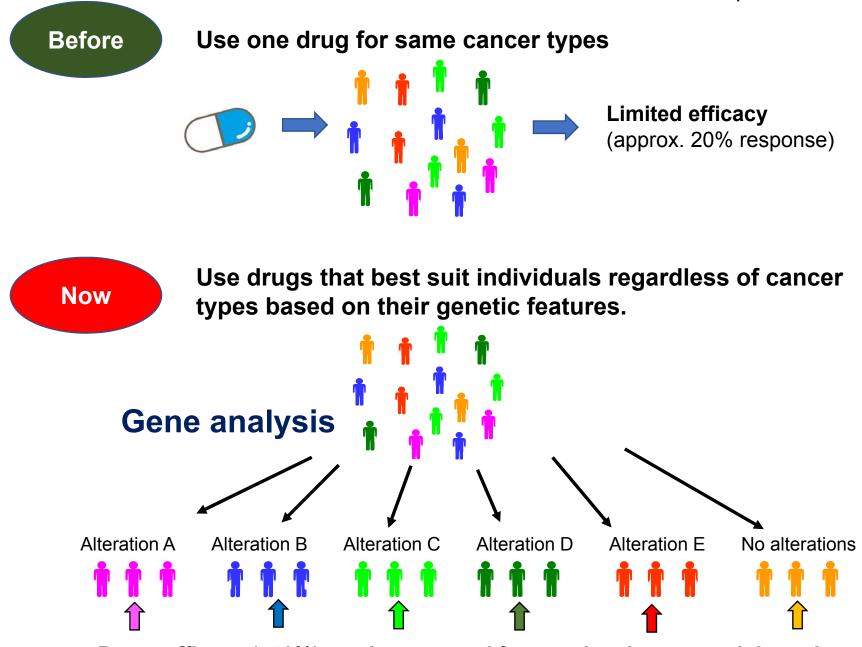
An Example of Personalized Medicine

Testing of cancer gene abnormalities in individual patients to explore therapeutic options

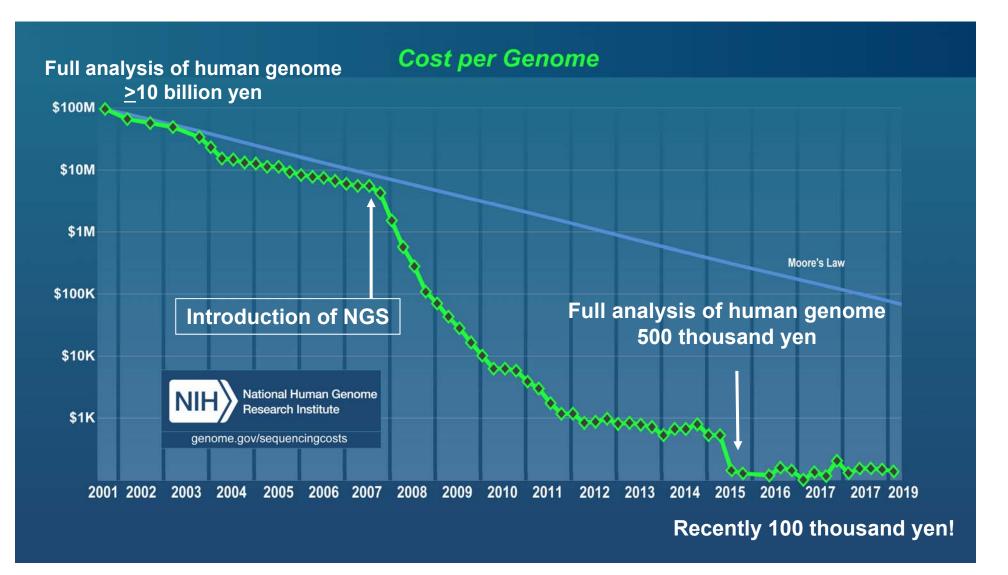

Testing Methods for Genetic Abnormalities

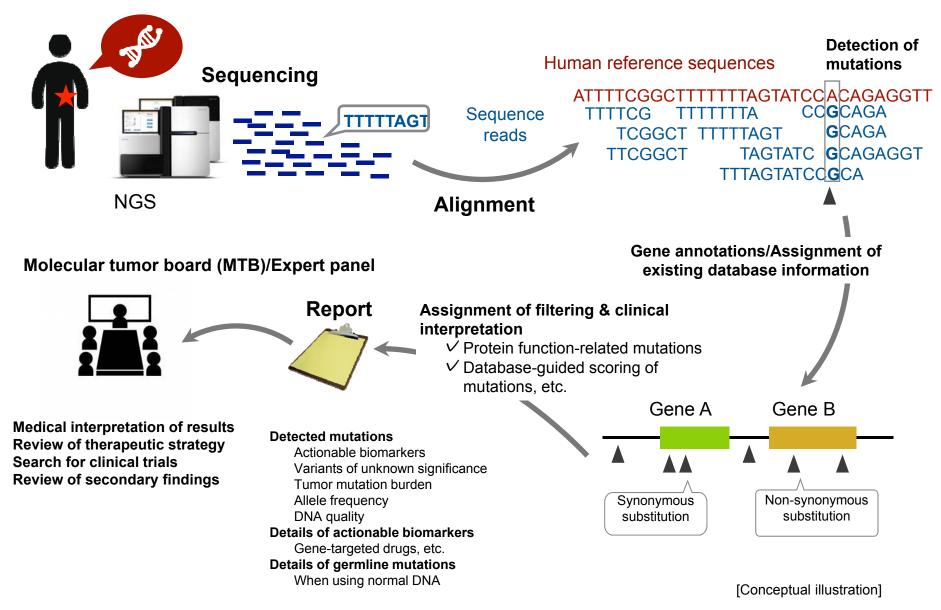
Under conventional approaches, <u>individual</u> <u>genes</u> are examined for abnormalities and <u>drugs</u> are administered <u>to treat diseases</u> <u>caused by these abnormalities</u>.


Molecular targeted drug therapy


Why is Genomic Medicine Necessary in the Field of Oncology?

Cancers are caused by abnormal gene functions. For instance, lung cancers caused by different genetic abnormalities will be treated with different therapies.


The treatment of cancer has already entered the age of anticancer drug therapy based on genetic testing, and "cancer genomic medicine" will yield even greater therapeutic advancement.



Better efficacy (>50%) can be expected from molecular targeted therapies

Advances in Gene Analysis Technologies

Flow of Genomic Medicine Using NGS

Main NGS-based genomic profiling tests with regulatory approval & national health insurance coverage (NHI) in Japan (Reviewed by Committee on Medical Devices and *in vitro* Diagnostics on Dec 13, 2018; Reviewed by Central Social Insurance Medical Council [Chuikyo] on May 30, 2019)

OncoGuide[™] NCC Oncopanel System (Sysmex)

FoundationOne[®] CDx Cancer Genomic Profile (Chugai/Roche)

OncoGuide NCC Oncopanel System

The OncoGuide NCC Oncopanel System is a combination of medical devices comprising a template DNA preparation reagent and analysis program. It is used to output gene mutation data to support the development of therapeutic strategies based on comprehensive genomic profiling of 114-cancer related genes identified in patients with solid cancers.

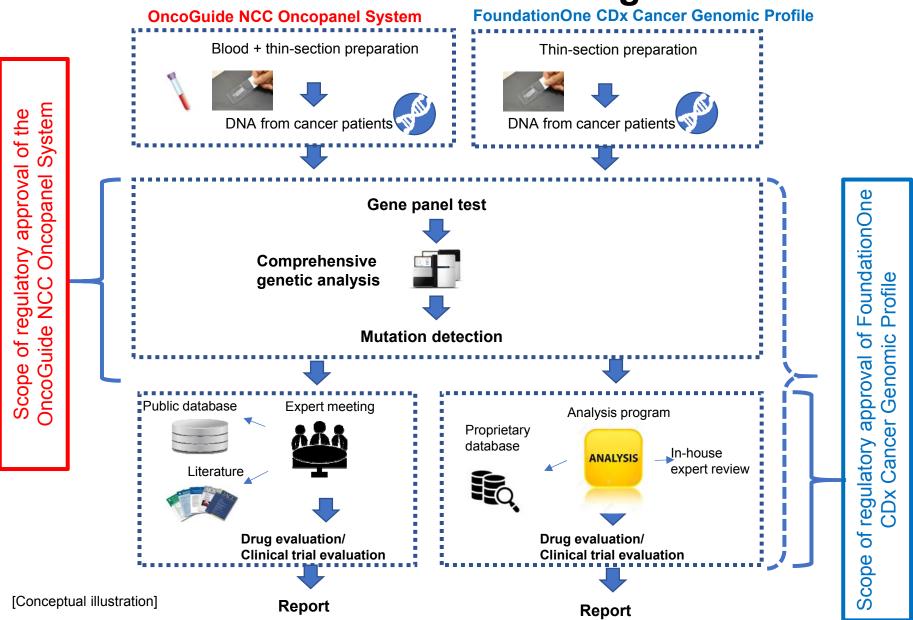
FoundationOne CDx Cancer Genomic Profile

FoundationOne CDx Cancer Genomic Profile is an analysis program that outputs data on gene mutations to support the development of treatment strategies and the assessment of drug indications based on comprehensive genomic profiles of 324 cancer-related genes identified in patients with solid cancers.

FoundationOne CDx Cancer Genomic Profile Can Also be Used as a Companion Diagnostic

Alterations	Cancer type	Relevant drugs
<i>EGFR</i> exon 19 deletions and <i>EGFR</i> exon 21 L858R alterations	Non-small	afatinib dimaleate, erlotinib hydrochloride, gefitinib, osimertinib mesylate
EGFR exon 20 T790M alterations	cell lung cancer	osimertinib mesylate
ALK fusion genes	Cancer	alectinib hydrochloride, crizotinib, ceritinib
BRAF V600E and V600K alterations	Malignant melanoma	dabrafenib mesylate, trametinib dimethyl sulfoxide, vemurafenib
<i>ERBB2</i> copy number alterations (<i>HER2</i> gene amplification positive)	Breast cancer	trastuzumab (genetical recombination)
KRAS/NRAS wild-type	Colorectal cancer	cetuximab (genetical recombination), panitumumab (genetical recombination)
NTRK1/2/3 fusion gene	Solid tumors	entrectinib

Source: Chugai Obtains Approval of FoundationOne CDx Cancer Genomic Profile as a Companion Diagnostic for Rozlytrek https://www.chugai-pharm.co.jp/english/news/detail/20190627120000_628.html (accessed on June 28, 2019)


OncoGuide NCC Oncopanel System

The OncoGuide NCC Oncopanel System is a combination of medical devices comprising a template DNA preparation reagent and analysis program. It is used to output gene mutation data to support the development of therapeutic strategies based on comprehensive genomic profiling of 114-cancer related genes identified in patients with solid cancers.

FoundationOne CDx Cancer Genomic Profile

FoundationOne CDx Cancer Genomic Profile is an analysis program that outputs data on gene mutations to support the development of treatment strategies and the assessment of drug indications based on comprehensive genomic profiles of 324 cancer-related genes identified in patients with solid cancers.

Difference in Scope of Regulatory Approval of Genomic Medicine using NGS

An Example of C-CAT Survey Results

作成中

C-CAT調査結果

1基本項目

登録ID	XXXXXXX	图名化患者ID	ABC123456	検査ID	123456789
年齢	65	性別	男性	がん種	Breast Cancer
The second second		The book and		The new party and the later	and the statement
1-2 医病	機関				
連携病院	テスト大学病院	拠点病院	テスト病院	中极拠点病院	テスト病院
連携病院 1-3 検査		拠点病院	テスト病院	中极拠点病就	テスト病院

2018/4/5

パネル名 NCC oncopanel 測定日

2 検査結果

数要 着 薬剤への到達性の指標をご参照く						
検出変異数	国内流認莱	国内臨床試験中	国内遇用外承認	海外臨床試験中	FDA讯题案	
体細胞変異:9 生殖細胞系列変異:3	5	2	2	2	7	

塩基置換、挿入、欠失(DNA)

No.	マーカー	変化	アレル頻度	エピデンス タイプ	信床的 意義	エピデンス レベル	薬剤	薬剤への 到達性	QCI			
1	EGFR	p.1858R	0.288 (553/1918)	Predictive	Sensitivé	A	Gefitinib	国内承诺 FDA承認	Tier 1A Pathogenic			
				Predictive	Sensitive	A	Erlotinib	国内承證 FDA承證				
				Predictive	Sensitive	A	Afatinib	国内承認 FDA承認				
			Predictive Sensitive Predictive Sensitive	A	Osmertinib	国内承認 FDA承認	1					
				Predictive	Sensitive	A	Dacomitinib	FDA承認				
					Oncogenicity	Likely Oncogenic	F					
2	MSH2	p.5900*	p.5900*	p.5900*	p.5900*		Predisposing	Pathogenic	F			Tier 1A Pathogenic
			(1459/2752)	Oncogenicity	Likely Oncogenic	F			Pathogenic			
3	FGFR3	N718S	0.474 (832/1754)									
4	STKII	F354L	0.502 (722/1437)									
5	APC	D900V	0.500 (150/300)									
6	BRCA1	Y856H	0.47 (94/200)									

作成中

遺伝子再構成(DNA)、構造異型(DNA)

No.	マーカー	変異種類	サイトノンド	エビデンス タイプ	臨床的 意義	エピデンス	菜削	業剤 ステータス	QCI
7		6 Rearrange ment	chr10:61,65 7,343 chr10:43,61 1,194	Predictive	Sensitive	С	Vandetanib	国内遗传外	Tier 1A Patho genic
	-RET			Predictive	Sensitive	с	Lenvatinib	国内遗传外	
				Predictive	Sensitive	D	Nintedanib		
				Oncogenicity	Oncogenic	F			

コピー数変化 (T/N実施検査のみ)

No,	マーカー	コピー数変化	サイトノンド	エピデンス タイプ	臨床的 獻義	エビデンス レベル	菜剂	業剤 ステータス	QCI
8	MYC	19.5	chr8:127,73 6,069-127,7 41,434	Oncogenicity	Oncogenic	F			

融合遺伝子(RNA)やエクソンスキッピング(RNA)

No.	マーカー	融合遺伝子	サイトバンド	リード数	エビデンス タイプ	臨床的 意義	エビデンス レベル	業刑	薬剤 ステータス	QCI
9	МУВ	МУВ-NFIB (15/16 - 11/12)	6q23.3-9q23	540 (98.5%)	Predisposing	Patho genic	F			

Tumor Mutational Burden (T/N実施検査のみ) Tumor Mutational Burden

Tumor Mutational Burden		
6 (Mut/Mb)		

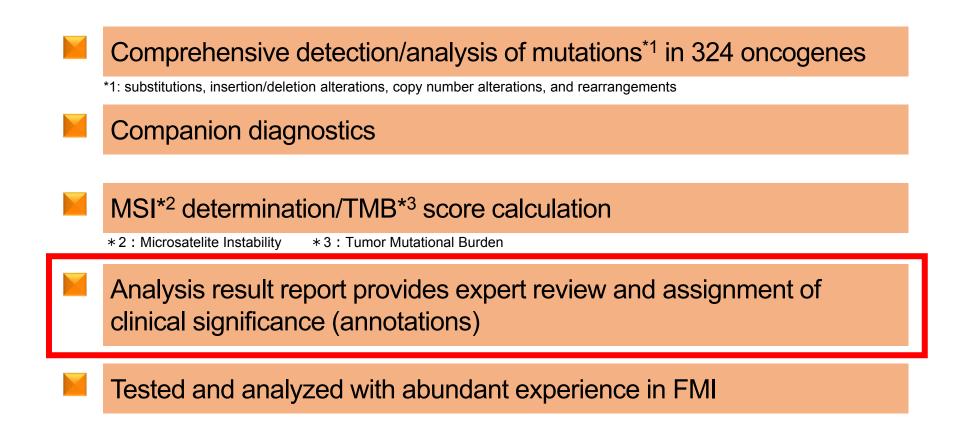
生殖細胞系列変異 (T/N実施検査のみ)

🛕 非がん部組織由来のDNA解析結果を表示しております。

No.	マーカー	变化	アレル頻度	エビデンス タイプ	臨床的意義 ClinVar ID	エピデンス	室司	薬剤 ステータス	QC1
1	PTEN	C136Y	0.500 (150/300)	Predisposing	Pathogenic RCV000169797.1				Patho genic
2	BRCA1	Y856H	0.47 (94/200)	Predisposing	Likely benign RCV000148383.1				Benign
3	BRCA1 E1559K -	-	Predisposing	Pathogenic				Tier 1A	
			Predictive	Sensitive	A	Olaparib	国内承認 FDA承認	Patho genic	
				Predictive	Sensitive	D	Rucaparib	国内試験中 FDA承認国	
	Predictive Sensitive		Sensitive	В	Talazoparib	国内試験中 FDA承認			
						Niraparib	FDA減出		

3候補となる臨床試験一覧

※下記の治験・臨床試験については、詳細な透格基準・除外基準に合致しているか否か、患者登録受付中であるか否か、「実施機関(遺給 先)」への確認が必要となります。


Rucaparibを用いた国内臨床試験

凱床試験DB	試験ID	試験名称	Phase	対象マーカー	データ更新日	実施機関(連絡先)
Clinicaltrials	NCT034 99444	A Study of Rucaparib in Japanese Patients With a Previouslytreated Solid Tumor		BRCA1 E1559K	2018/4/5	ClovisOncology (clovistrials@emergingmed.com)

from Information meeting for Core hospitals on 2019/02/05

作成日:2018年11月2日 レポートバージョン:1.0

Characteristics of FoundationOne CDx Cancer Genomic Profile

Analysis Report of FoundationOne CDx

APPROVED THERAPEUTIC OPTION IN JAPAN

(1) CDx results with identified gene mutations and corresponding drugs

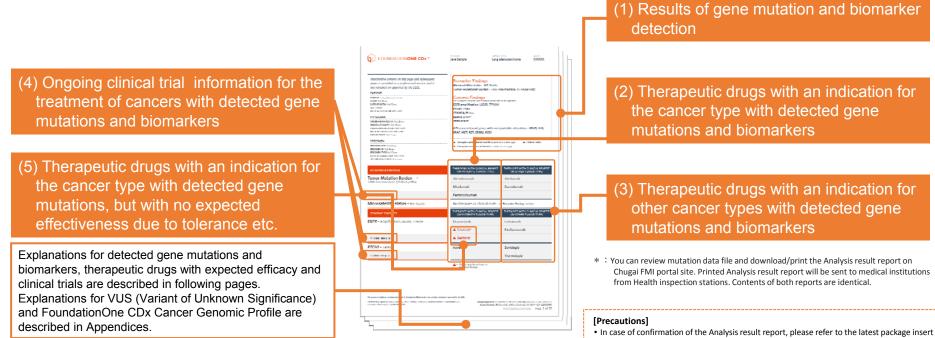
(2) Non-CDx results with identified gene mutations and biomarkers that are not used for companion diagnostics Results should be used for diagnosis and finding applicable anticancer drugs (companion diagnostics) based on identified gene mutations.

Identified gene mutations and biomarkers that are not used for companion diagnostics are listed. Results should be used for diagnosis and support for treatment decision

* : You can review mutation data file and download/print the Analysis results reports at Chugai FMI portal site. Printed Analysis result report will be sent to medical institutions from Health inspection stations. Contents of both reports are identical.

[Precautions]

In case of confirmation of the Analysis results reports, please refer to the latest
package insert of FoundationOne CDx Cancer Genomic Profile.


 "APPROVED THERAPEUTIC OPTION IN JAPAN" is prepared based on approved drug information at the time of first approval of FoundationOne CDx Cancer Genomic Profile in Japan. In case of determining therapeutic drugs, please refer to the latest package inserts of the drugs.

APPROVED THERAPEUTIC OPTION IN JAPAN provides CDx results with identified gene mutations and corresponding drugs, Non-CDx results with other identified gene alterations, testing results of microsatellite instability and tumor mutation burden.

Source: Chugai website (accessed on June 28, 2019) https://chugai-pharm.jp/content/dam/chugai/product/f1t/cdx/report-fullmock/doc/F1CDx-Report-Fullmock.pdf

Analysis Report of FoundationOne CDx Cancer Genomic Profile

PROFESSIONAL SERVICES

- of FoundationOne CDx Cancer Genomic Profile.
- "PROFESSIONAL SERVICES" is not approved by the Ministry of Health, Labour and Welfare.

PROFFESIONAL SERVICES provide information such as detected gene mutation and MSI/TMB (biomarker), therapeutic drugs with expected clinical efficacy, clinical studies and tolerance etc.

Source: Chugai website (accessed on June 28, 2019) https://chugai-pharm.jp/content/dam/chugai/product/f1t/cdx/report-fullmock/doc/F1CDx-Report-Fullmock.pdf

Cancer genomic medicine in Japan

Draft Selection Criteria for Core Hospitals for Cancer Genomic Medicine

資料5

1

がんゲノム医療中核拠点病院(案)等の 指定要件(案)

厚生労働省健康局 がん・疾病対策課

51

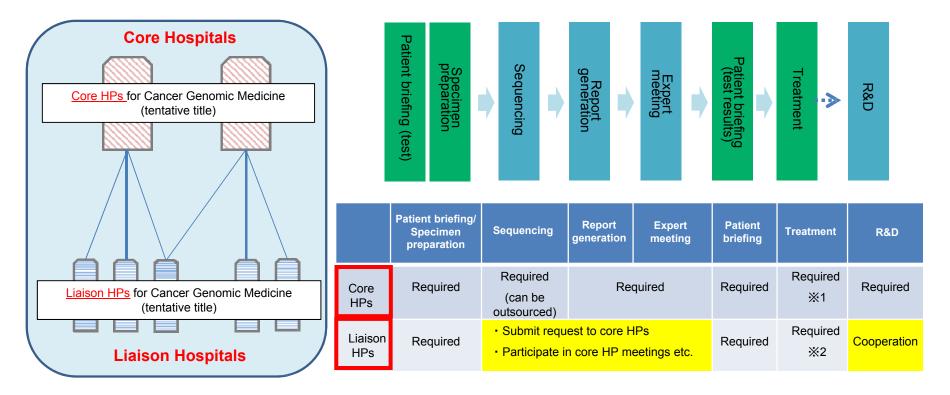
Report of Cancer Genomic Medicine Promotion Consortium Council (excerpt)

Requirements for medical institutions to implement cancer genomic medicine:

- (1) <u>A system to conduct panel tests</u> (including outsourcing to external organizations)
- (2) A group of experts to offer medical interpretation of panel test results (including collaboration with other organizations in some areas of medical care)
- (3) <u>Ability to provide expert genetic counseling</u> for patients with hereditary and other cancers
- (4) <u>Access to a certain number of patients</u> who are eligible for panel testing, etc.
- (5) Ability to collect and manage panel test results and clinical information in a secured manner, and to register necessary information with Center for Cancer Genomics and Advanced Therapeutics.
- (6) <u>A system for rapid freezing and storage</u> of surgical specimens and other biological specimens
- (7) An appropriate framework for and experiences in conducting clinical studies including those for advanced medical care, investigator-initiated clinical trials, and global clinical trials.
- (8) Comprehensive and accessible contact services for patients and other stakeholders regarding use of medical information, clinical trial information and etc.

Committee on Designation of Core Hospital for Cancer Genomic Medicine (2018/2/14)

The committee selected the following medical institutions.


Minister of Health, Labour and Welfare will designate Core Hospital for Cancer Genomic Medicine based on today's discussion.

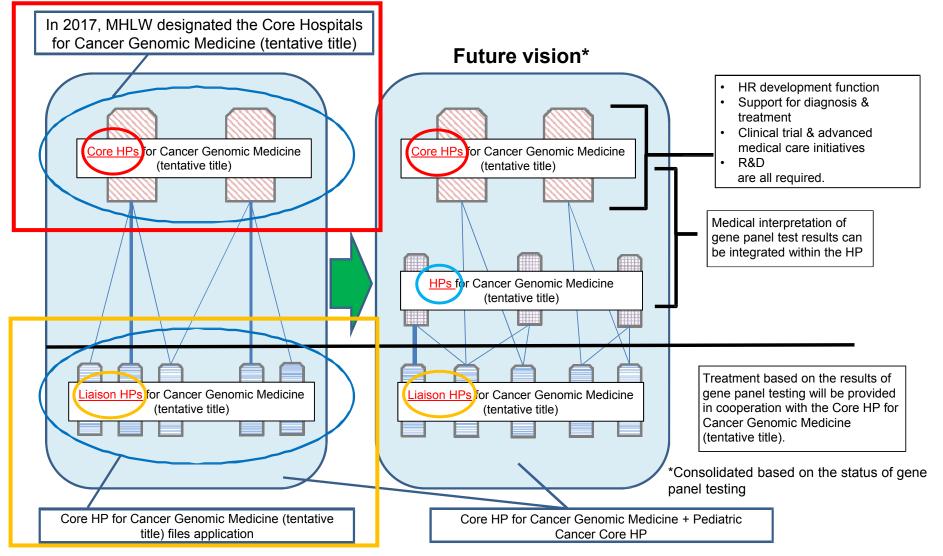
#	Prefecture	Core hospitals for cancer genomic medicine
1	Hokkaido	Hokkaido University Hospital
2	Miyagi	Tohoku University Hospital
3	Chiba	National Cancer Center (NCC) Hospital East
4	Токуо	Keio University Hospital
5	Токуо	University of Tokyo Hospital
6	Токуо	NCC Hospital
7	Aichi	Nagoya University Hospital
8	Kyoto	Kyoto University Hospital
9	Osaka	Osaka University Hospital
10	Okayama	Okayama University Hospital
11	Fukuoka	Kyushu University Hospital

Committee on designation of Core Hospitals for Cancer Geniomic Medicine (2018/02/14)

https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000194191.pdf

Conceptual Illustration of the System for Delivering Cancer Genomic Medicines and Required Functions (draft)

- %1 In order to secure access to non-approved & off-label drugs, the Core Hospital for Cancer Genomic Medicine (tentative title) must establish a system capable of taking the initiative in conducting clinical trials (including investigator-initiated trials) and advanced medical care.
- X2 The Liaison Hospital for Cancer Genomic Medicine (tentative title) must establish a system to facilitate participation in the above-mentioned clinical trials and advanced medical care.


Source: The 2nd Sub-working group meeting on the designated requirements of core HPs for Cancer Genomic Medicine (tentative title), Document #4 (2017/09/11) https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000177033.pdf Accessed: 2019/06/25

Number of Liaison Hospitals Affiliated with Each Core Hospital

Core hospitals for cancer genomic medicine	Apr 2018	Oct 2018	Apr 2019
Hokkaido University Hospital	2	4	4
Tohoku University Hospital	6	8	8
National Cancer Center (NCC) Hospital East	6	8	9
Keio University Hospital	24	35	36
National Cancer Center Hospital	9	20	23
University of Tokyo Hospital	14	16	19
Nagoya University Hospital	14	18	21
Kyoto University Hospital	20	23	28
Osaka University Hospital	8	13	15
Okayama University Hospital	16	21	29
Kyushu University Hospital	13	16	19
No. of liaison hospitals *Some liaison hospitals are affiliated with multiple core hospitals.	100	135	156

System for Delivering Cancer Genomic Medicine: Cancer and Disease Control Division, Health Services Bureau, Ministry of Health, Labour and Welfare (MHLW)

Future vision of the system for delivering cancer genomic medicine (draft)

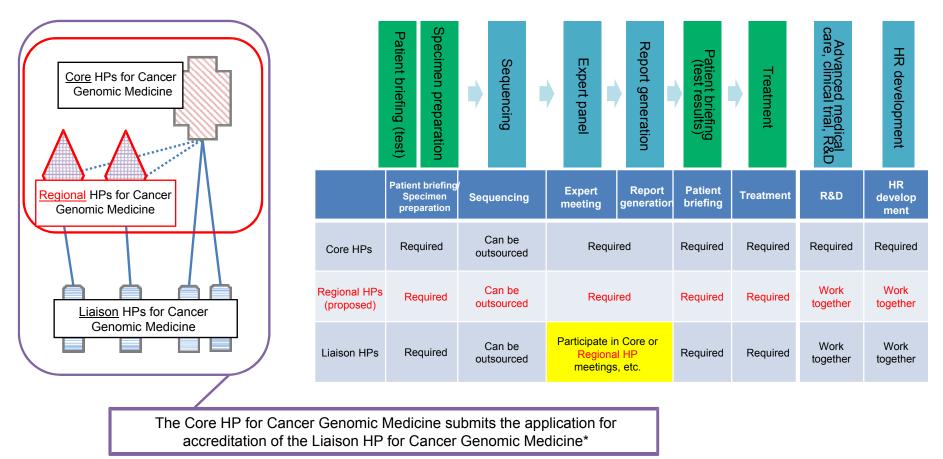
Source: The 2nd Sub-working group meeting on the designated requirements of core HPs for Cancer Genomic Medicine (tentative title), Document #4 (2017/09/11) <u>https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000177033.pdf</u> Accessed: 2019/06/25

Outline of the Working Group Meeting on the Designated Requirements of Core HPs for Cancer Genomic Medicine (Document in Japanese Only)

資料1

「がんゲノム医療中核拠点病院等の指定要件に関するワーキンググループ」

開催要綱

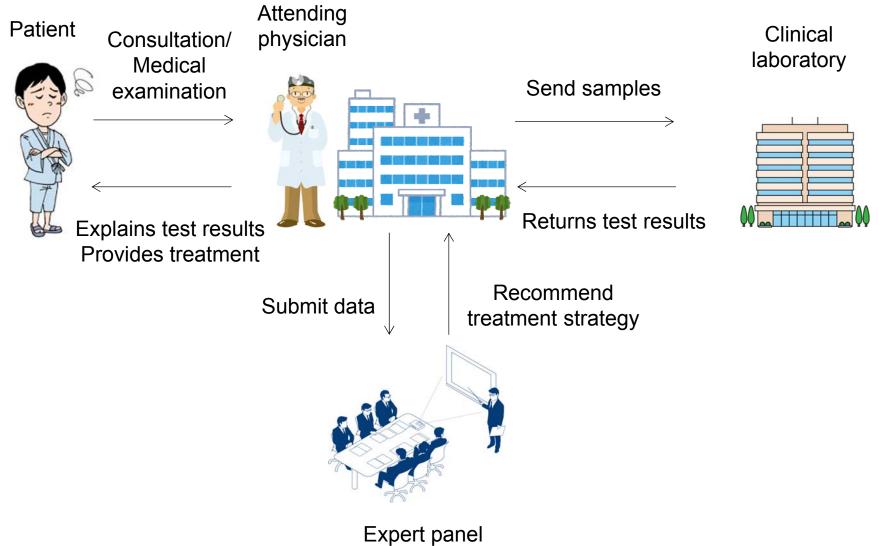

1. 趣旨

政府としては、平成30年(2018)3月に閣議決定された第3期がん対策推進基本計画 に基づき、ゲノム医療を必要とするがん患者が、全国どこにいても、がんゲノム医療を受 けられる体制整備を進めてきた。

平成29(2017)年12月に「がんゲノム医療中核拠点病院等の整備について「がんゲノム医療中核拠点病院等の整備に関する指針(平成29年12月25日健発1225第3号厚生労働省健康局長通知の別添)」を発出し、平成30(2018)年2月に、がんゲノム医療を牽引する高度な機能を有する医療機関として「がんゲノム医療中核拠点病院(以下、中核拠 点病院)」を全国に11箇所指定し、中核拠点病院と連携して、がんゲノム医療を提供する「がんゲノム医療連携病院」を平成31(2019)年4月までに156箇所公表してきた。

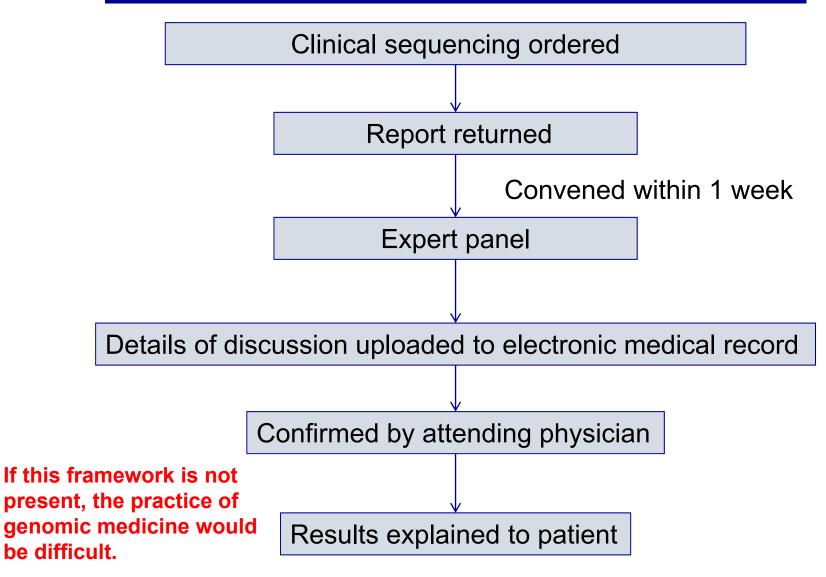
今般、がんゲノム医療提供体制をさらに充実させるため、「がんゲノム医療中核拠点病 院等の整備に関する指針」を見直すとともに、自施設でがんゲノム医療を完結できる医療 機関として「がんゲノム医療拠点病院」の指定要件を策定するため、本ワーキンググルー プを設置し、検討結果を「がん診療提供体制のあり方に関する検討会」に報告することと する。

Future functions of Core, Regional & Liaison Hospitals for Cancer Genomic Medicine (draft)

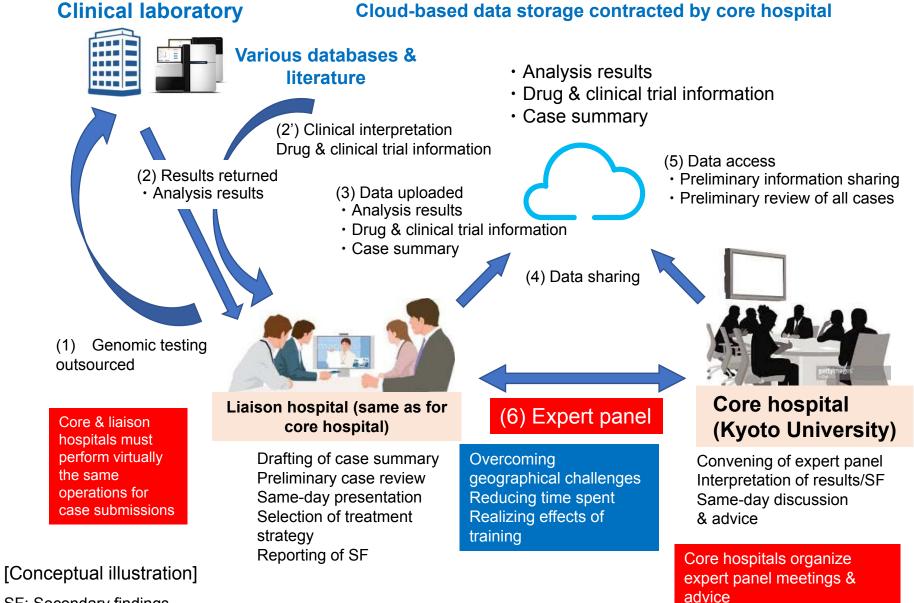

*After confirming that the developmental requirements stipulated in the above-mentioned guidance have been satisfied, the Core HP or Regional HP for Cancer Genomic Medicine will submit an application to the MHLW Minister seeking accreditation of medical institutions with which it collaborates as Liaison HPs for Cancer Genomic Medicine.

Thereafter, the Core HP or Regional HP for Cancer Genomic Medicine will submit approximately one application <u>each year</u> to the Minister of MHLW to seek accreditation of additional Liaison HPs.

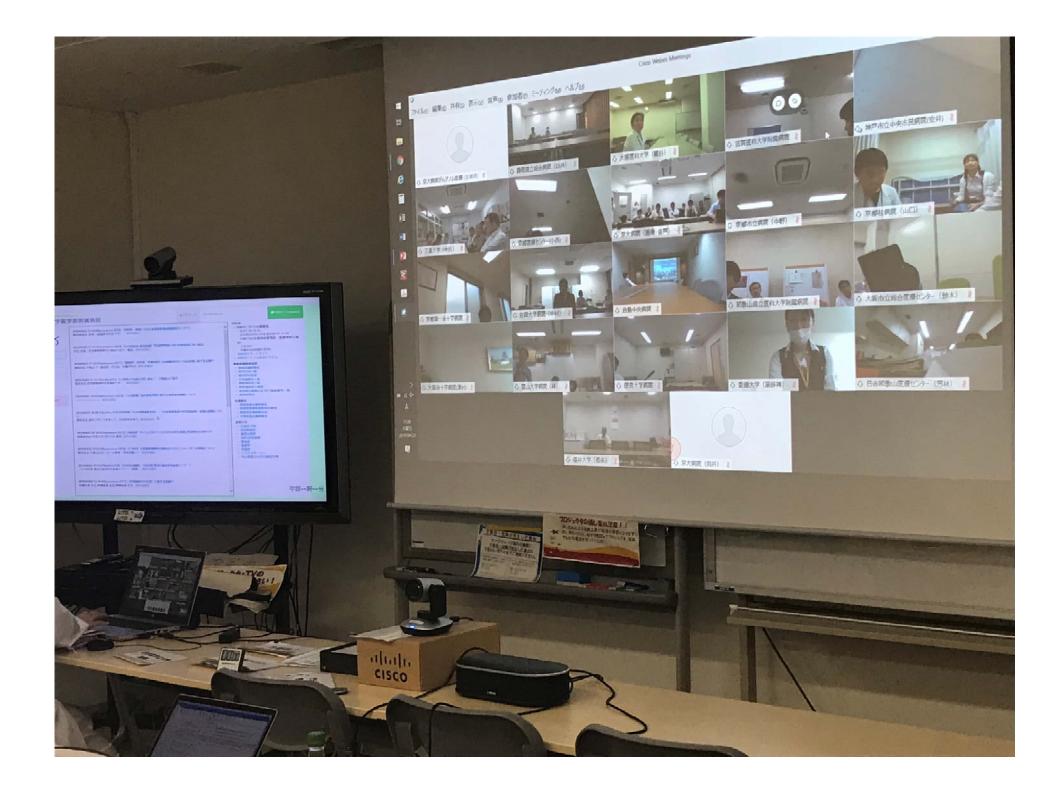
Source: The 1st working group meeting on the designated requirements of core HPs for Cancer Genomic Medicine, Document #3 https://www.mhlw.go.jp/content/10901000/000505968.pdf Accessed: 2019/06/28


Ideal Concept for Delivering Cancer Genomic Medicine

All aspects should be integrated within a single hospital



Convening the expert panel


Flowchart for returning reports to attending physicians & explaining results to patients

Practical Example of Expert Panel Operation via Web-based System

SF: Secondary findings

Expert Panel Structure & Performance

• Panel members

Specialization	Specialization
Clinical oncologist (clinical department)	Accredited genetic counselor
Surgical oncologist (surgery department)	Bioinformatician (NGS analyst)
Pathologist	Biobank personnel
Radiotherapist	Genomic medicine personnel
Clinical geneticist	CRC
Nurse	Postgraduate student in basic medical sciences
Pharmacist	Postgraduate student in genetic counseling
Clinical laboratory technician	Participation is also open to interested individuals

Expert panel members are required to sign a confidentiality agreement, and attendance is confirmed.

• Time & date of expert panel meetings:

From 5:30pm every Tuesday @Common Conference Room, 1F, Kyoto University Hospital Cancer Center

• Meeting format:

Web conference via WebEx: Liaison Hospitals attend (it is allowed to join the conference without cases)

Procedure in Preparation for Expert Panel Meeting

	Fri	Sa	Sat Sun		Mon	Tue	
Core hospitals	 Check liaison hospital report(s) Notify liaison hospital coordinating physician and web conference supervisor of scheduled meeting Also notify core hospital participants of scheduled meeting 		Draft case Review se		Distribute case summaries (for preliminary reviews)	 Send web conference invitation Prepare web conference connection (from 3:00 pm) Prepare web conference meeting (from 5:00 pm) Convene web-based 	
	 meeting Report whether any cases will be reviewed (by 9:00 am on the day of meeting) 		sur con	_		 Convene web-based expert panel meeting (5:30 pm – around 7:00 pm) 	
Liaison hospitals	 Report if any case reviews are scheduled (by 9:00 am on the day of meeting) Upload analysis report of case review(s) to Box 		ise summary secondary findings ion of relevant literature		Upload presentation summary to Box by morning of meeting	 Check web conference connection (from 3:00 pm) Prepare web conference meeting (from 5:00 pm) Participate in meeting via web conferencing 	

Challenges

- (1) Burden on web conference supervisor
- (2) Burden of drafting summaries
- (3) Limit on number of cases that can be reviewed (limit of 7-8 cases)

Standardizing Summaries for Web-based Expert Panel Meetings

Case outline

Age, sex, clinical diagnosis, histopathological diagnosis, family history, past & current medical history, representative images, etc.

Sequencing results

Positive biomarker, VUS, allele frequency, tumor mutational burden (TMB), any secondary findings (Y/N), etc.

Drug & clinical trial information on positive biomarker

Interpretation of secondary findings

Summary of results

Discussion of relevant literature

Drug & clinical trial evidence on positive biomarker, etc.

*Due to data storage limitations, summaries must not exceed 15 PowerPoint slides and/or 5 MB in size.

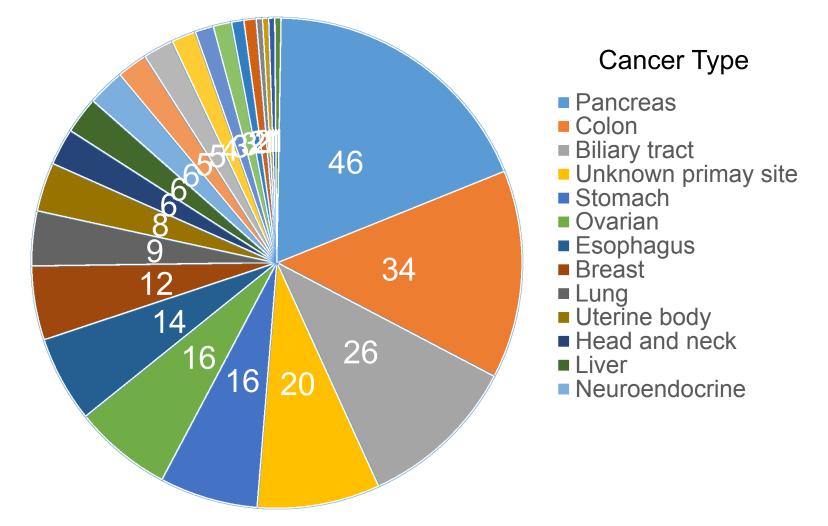
VUS: Variant of unknown significance

Cancer Clinical Sequencing in Practice

Cancer clinical sequencing at KUH Data from OncoPrime, a non-covered medical treatment

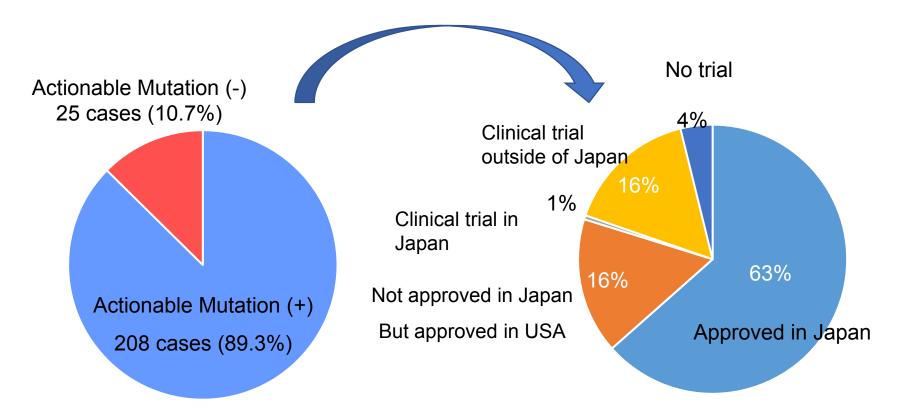
KUH: Kyoto University Hospital

Target Patients

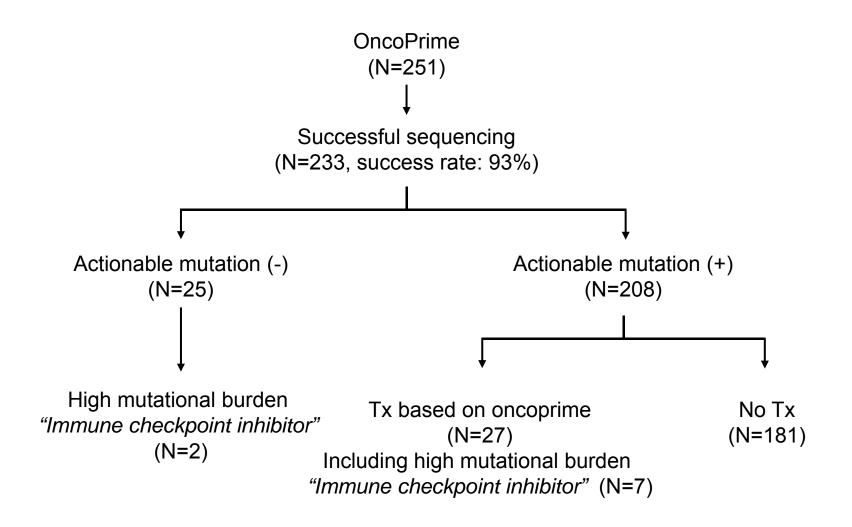

- Cancers of unknown primary origin
- Rare cancers
- Recurrent advanced cancers refractory to standard-of-care therapy

List of Genes Sequenced in OncoPrime

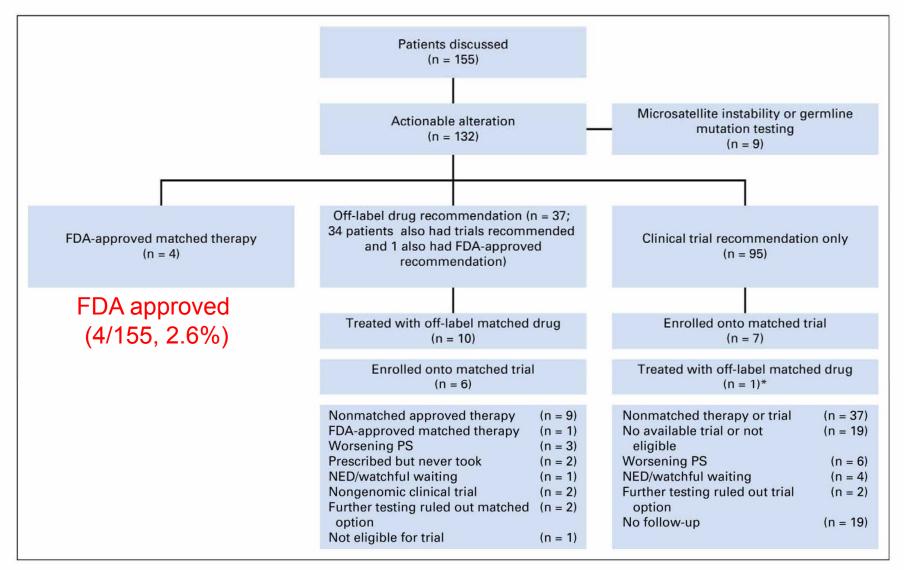
Gene mutations (SNV, insertion, deletion) (all exons of 210 genes)Translocations									S		
Genes with FDA-approved drugs (1									(17 genes)		
ABL	BLM	CRLF2	ESR1	H3F3A	MAP3K1	NFE2L2	PIK3R2	SETD2	TP53	ALK *	
ABL2	BRAF	CSF1R	EZH2	HNF1A	MAPK1	NOTCH1	PIK3R5	SF3B1	TP63	BCR	
ACVR1B	BRCA1	CTNNA1	FAM123B	HRAS	MDM2	NOTCH2	PMS1	SMAD2	TP73	ETV4	
AKT1	BRCA2	CTNNB1	FANCA	IDH1	MDM4	NOTCH3	PMS2	SMAD3	TPMT	MLL *	
AKT2	BTK	CYP1A2	FBXW7	IDH2	MED12	NOTCH4	PPP2R1A	SMAD4	TRAF7	RARA	
AKT3	CARD11	CYP2C19	FGFR1	IGF1R	MEN1	NPM1	PRDM1	SMARCA4	TSC1	BRAF *	
ALK	CASP8	CYP2C9	FGFR2	IGF2R	MET	NRAS	PTCH1	SMARCB1	TSC2	EGFR *	
APC	CBL	CYP2D6	FGFR3	IKZF1	MITF	NTRK1	PTCH2	SMO	TSHR	ETV6	
AR	CCND1	DAXX	FGFR4	IL7R	MLH1	NTRK2	PTEN	SOCS1	TYMS	PDGFRB *	
ARAF	CCND2	DDR2	FLT1	INSR	MLL	NTRK3	PTPN11	SRC	U2AF1	ROS1 *	
ARID1A	CCND3	DNMT3A	FLT3	JAK1	MPL	PALB2	RAD50	SRSF2	UGT1A1	ETV5	
ARID1B	CCNE1	DPYD	FLT4	JAK2	MRE11A	PARP1	RAD51	STAG2	VHL	ETV1	
ASXL1	CDC73	EGFR	FOXL2	JAK3	MSH2	PAX5	RAF1	STAT1	VKORC1	EWSR1	
ATM	CDH1	EP300	G6PD	KDM6A	MSH6	PBRM1	RB1	STAT3	WRN	RAF1 *	
ATR	CDK4	ERBB2	GATA1	KDR	MTHFR	PDGFRA	RET	STK11	WT1	TMPRSS2	
ATRX	CDK6	ERBB3	GATA2	KIT	MTOR	PDGFRB	RICTOR	SUFU	XPC	PDGFRA *	
AURKA	CDKN2A	ERBB4	GATA3	KLF4	MYC	PDK1	RNF43	TERT	XRCC1	RET *	
AURKB	CDKN2B	ERCC1	GLI1	KRAS	MYCN	PGR	ROS1	TET2			
AXIN1	CEBPA	ERCC2	GNA11	MAML1	MYD88	PHF6	RPTOR	TGFBR2		*Genes marked	
BAP1	CHEK1	ERCC3	GNAQ	MAP2K1	NBN	PIK3CA	RSPO2	TNFAIP3		with an asterisk are included in	
BCL2	CHEK2	ERG	GNAS	MAP2K2	NF1	PIK3CG	RSPO3	TOP1		both lists.	
BCOR	CREBBP	ERRFI1	GRIN2A	MAP2K4	NF2	PIK3R1	RUNX1	TOP2A			


Patients Characteristics

2015 April ~ 2018 September (n=251)

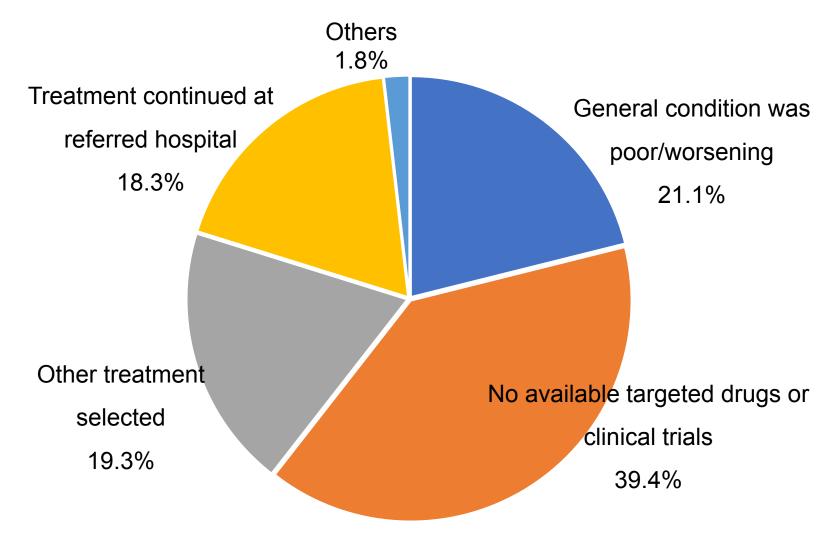

Actionable Mutation and Druggable Mutation

2015 April ~ 2018 September (n=251)


Most of them were OFF-label

Clinical Flow after Sequencing

Pts administered Tx = 12.4% (29/233)


(Reference) Personalized Medicine in the Oncology Clinic: Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board

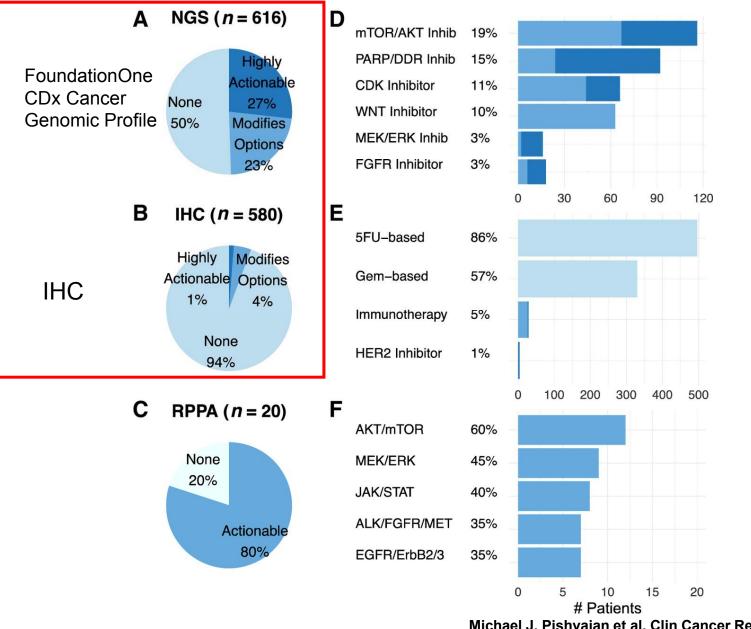
Off-label (37/155, 24%)

Dalton WB et al., Personalized Medicine in the Oncology Clinic: Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board. JCO Precis Oncol. 2017;2017. doi: 10.1200/PO.16.00046. Epub 2017 May 31_{7/}

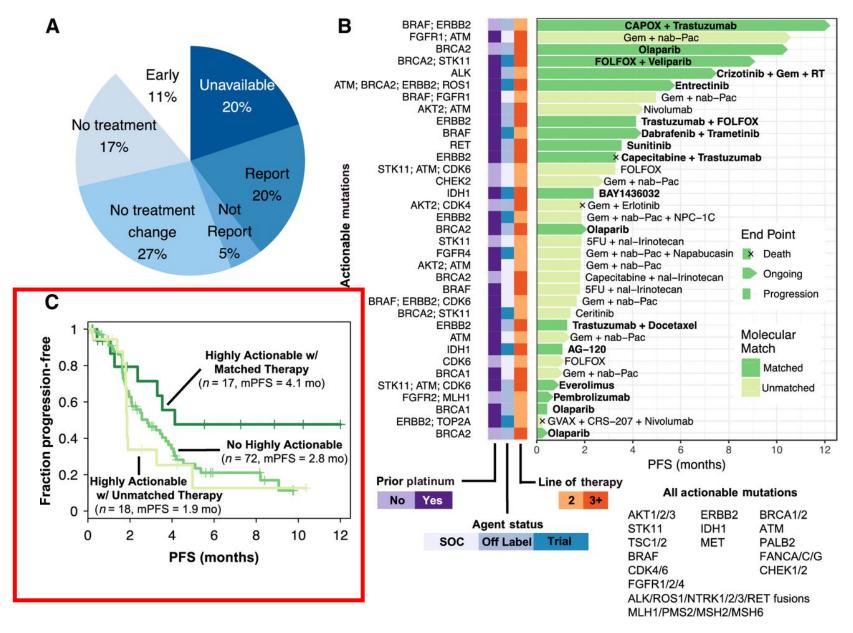
Reasons why Therapies could not be Selected Based on Test Results

Responders to Treatment

Precision Cancer Medicine in Practice

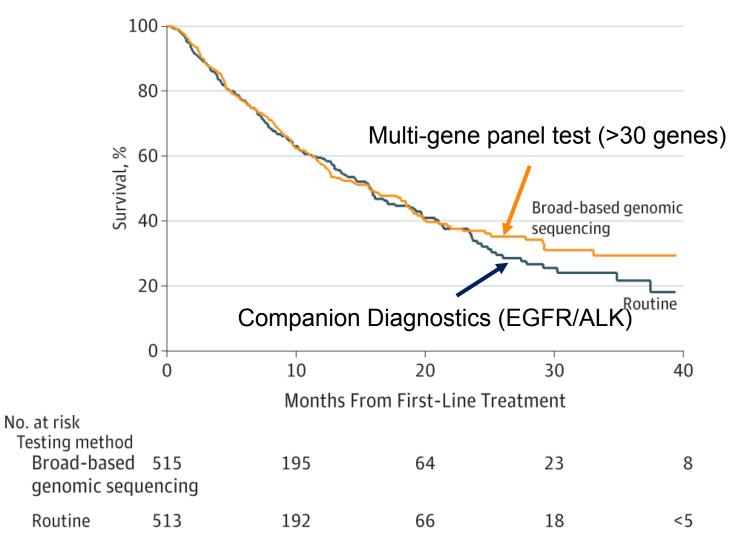

Treatment A won in a randomized clinical trial. Let's use this drug.

Your cancer was caused by a mutation in gene XX. So, let's start a treatment targeting this mutation.


Comparison of Actionable Biomarkers in Pancreatic Cancer Patients

(99 % of results come from FoundationOne CDx Cancer Genomic Profile)

Michael J. Pishvaian et al. Clin Cancer Res 2018;24:5018-5027


Treatment Effect on Pancreatic Cancer Patients with Actionable Mutations

Michael J. Pishvaian et al. Clin Cancer Res 2018;24:5018-5027

Comprehensive Panel Testing and CDx Shows No Difference in Prognosis in NSCLC

From: Association of Broad-Based Genomic Sequencing With Survival Among Patients With Advanced Non–Small Cell Lung Cancer in the Community Oncology Setting

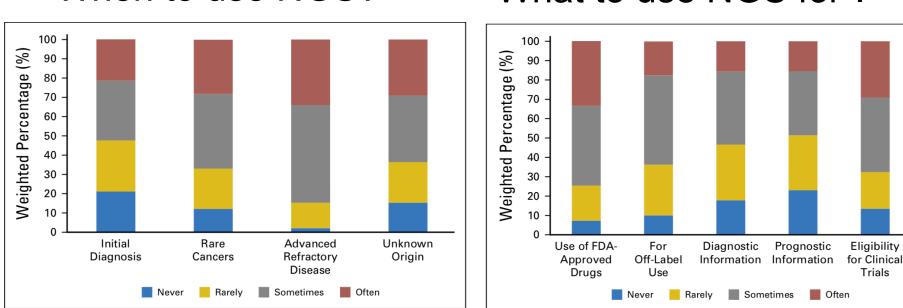
JAMA. 2018;320(5):469-477. doi:10.1001/jama.2018.9824

Challenges to Cancer Genomic Medicine in Japan

Patients Who Can Use Genomic Testing under the NHI Scheme

Patients with solid tumors for which there are no standard therapies, and patients with locally advanced or metastatic solid tumors who have completed standard therapies (including those who are expected to complete standard therapies)

Patients for whom their treating physician judges to be suitable for chemotherapy based on the functional status of organs, their overall condition and etc, in accordance with relevant chemotherapy guidelines


In the US, all patients with stage 3 or 4 cancer can use FoundationOne CDx under CMS coverage.

The 415th Central Social Insurance Medical Council (General Meeting) https://www.mhlw.go.jp/content/12404000/000513115.pdf Accessed: 2019/7/3

Centers for Medicare & Medicaid Services Press release on March 16, 2018 https://www.cms.gov/newsroom/press-releases/cms-finalizes-coverage-next-generation-sequencingtests-ensuring-enhanced-access-cancer-patients Accessed: 2019/7/3 Use of Next-Generation Sequencing Tests to Guide Cancer Treatment: Results From a Nationally Representative Survey of Oncologists in the United States **Research period**

- one year, 2017
- · conducted by email
- N=1,281

(cooperation rate=38%)

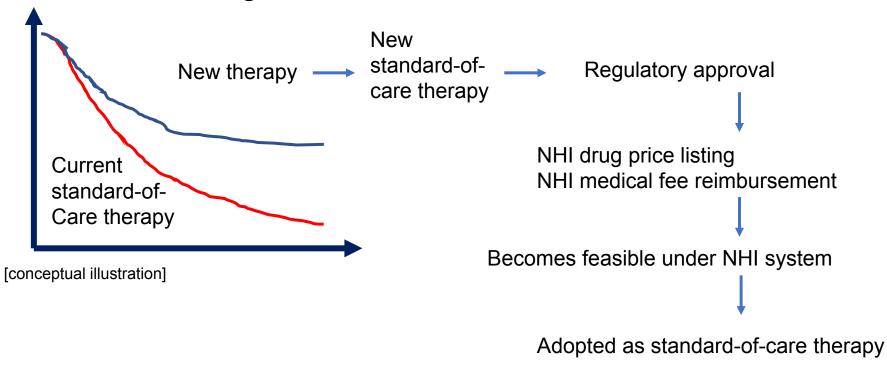

75.6% of oncologists who answered use NGS to determine treatment plan

When to use NGS? What to use NGS for ?

Eligibility for genomic testing in Japan

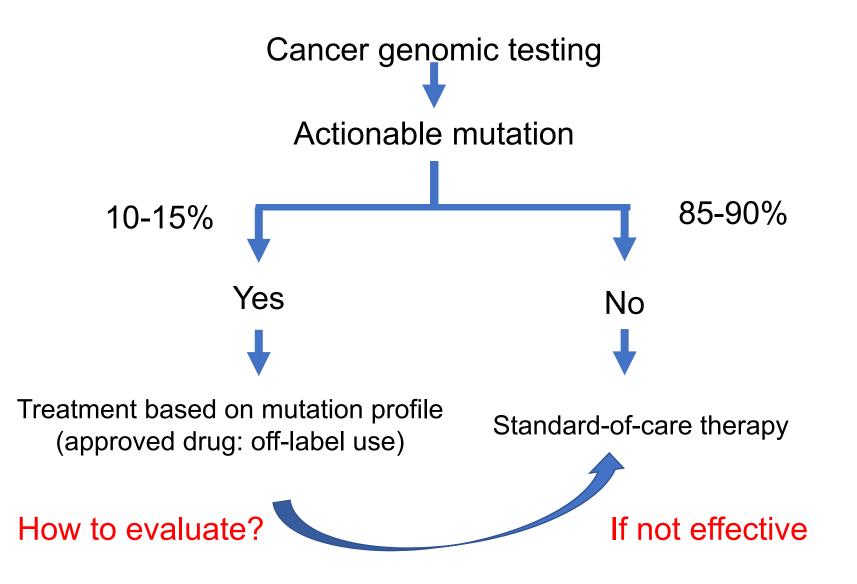
- 1. Cancers of unknown primary origin and Rare cancers
- 2. Cancers refractory to standard-ofcare therapy

[Conceptual illustration]


When a treatment is repeated, its effectiveness generally decreases (development of resistance).

The decision to administer a drug that is expected to be effective at the initial stage should therefore be viewed as a logical one.

No. of treatments


So is it acceptable to perform genomic testing before initial treatment?

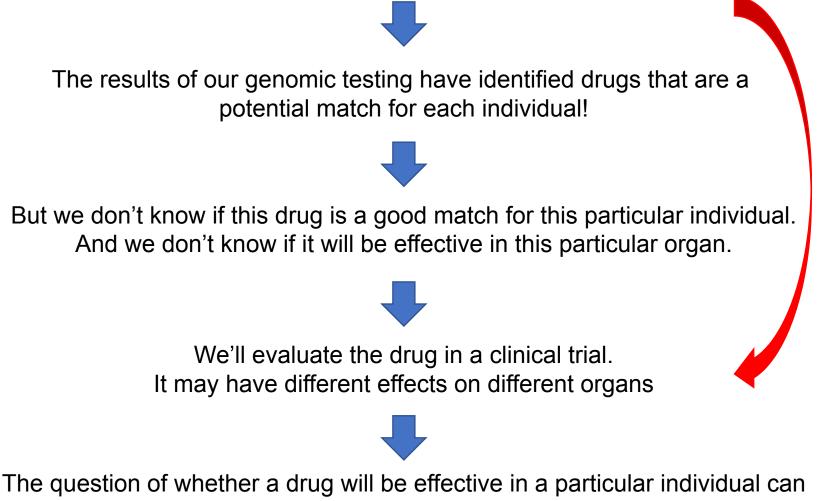
Standard-of-care therapy is determined by the results of large-scale Phase III clinical trials.

Even if a drug candidate is identified in genomic testing, there is no guarantee that it will become readily available

Flow of Genomic Testing Used for Initial Treatment

Eligibility for genomic testing in Japan

- 1. Cancers of unknown primary origin and Rare cancers
- 2. Cancers refractory to standard-ofcare therapy


Is it possible to treat patients with targeted drugs under NHI coverage if genomic testing identified actionable alterations for patients whose cancers is unknown of its primary origin or for patients with rare cancers?

Eg.) Genomic testing identified ALK gene fusion in patients with cancer of unknown primary. Then, is it possible to treat patients under the diagnosis of ALK positive lung cancer? Answer is NO.

Is it possible to treat such a patient based on MoA with detailed record of his symptoms?

Self-contradiction in Precision Cancer Medicine

Precision cancer medicine is a treatment tailored to each individual

Self-contradiction

Issues on Access to Treatment

Treatment-related Issue:

How can Patients be Treated with Off-label Drugs?

	Patient briefing/ Specimen preparation	Sequencing	Expert meeting	Report drafting	Patient briefing	Treatment	R&D
Core hospital	Required	Required (Can be outsourced)	Required		Required	Required ※1	Required
Liaison hospital	Required	 Ask for Core Hospitals Participate in Core or Regional Hospital meetings, etc 			Required	Required ※2	Cooperation

MHLW guidance states that the use of off-label drugs based on genomic testing is anticipated <u>in clinical trials and advanced medical treatments</u>...

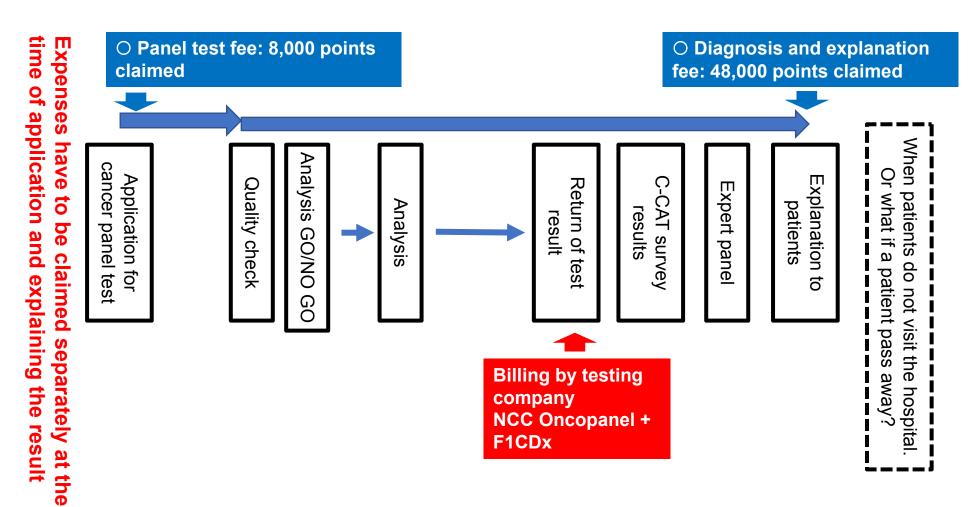
But do clinical trials & advanced medical treatments constitute precision medicine?

If such treatment is to be administered in a clinical study, it should be done in a 'basket trial' to obtain an additional indication for an approved drug.

Source: The 1st working group meeting on the designated requirements of core HPs for Cancer Genomic Medicine, Document #3 <u>https://www.mhlw.go.jp/content/10901000/000505966.pdf</u> Accessed: 2019/06/28

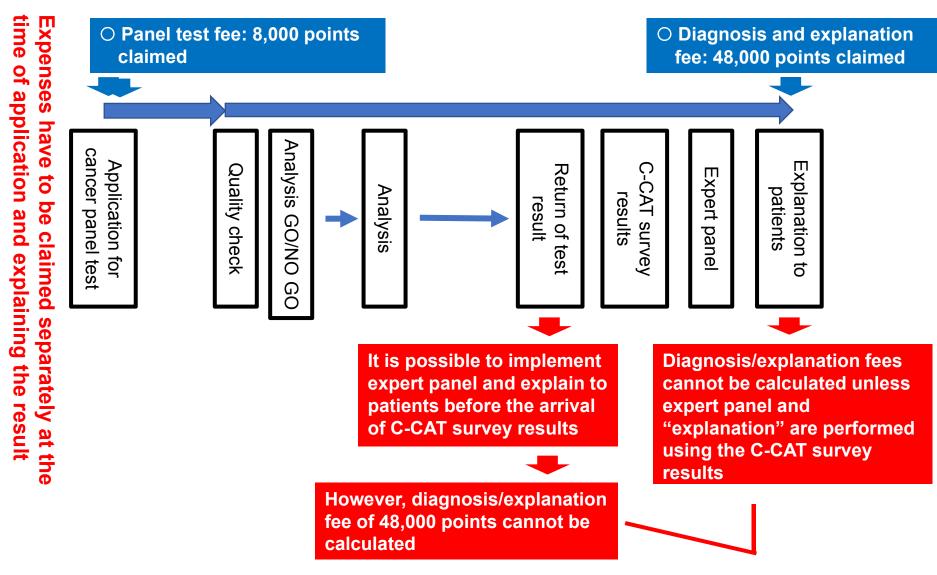
Issue in Treatment: How to Treat?

• Dealing with off-label use of drugs


- ✓ For the time being, apply for off-label use on a case-by-case basis
- In the future, it will be necessary to leverage programs such as compassionate use & 'patient-requested medical care' (although there are considerable obstacles because the usage would have to be based on clinical trials)

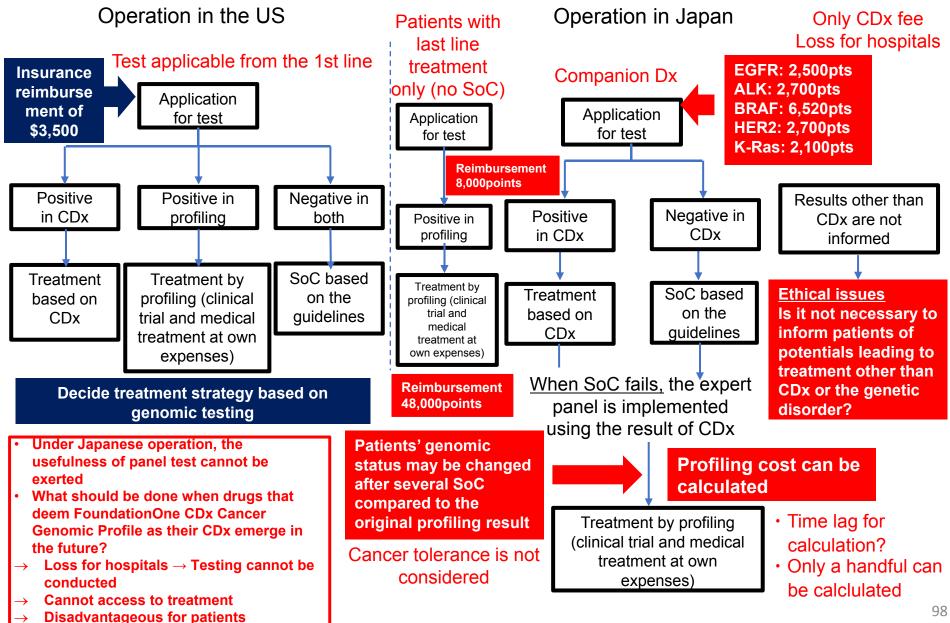
✓ Introduction of single patient IND

- What about off-patent drugs or drugs without data protection period?
 - ✓ Companies would not be willing to conduct clinical trials for these drugs
- Should beneficiaries pay?
 - Dealing with test and treatment costs involving life insurance companies
 - Expansion of private insurance including non-covered medical treatments


Timing Issues on Calculation of Medical Fees

Timing Issues on Calculation of Medical Fees

It is important to select patients whose condition is unlikely to worsen after the tests


Timing Issues on Calculation of Medical Fees

Should expert panel be implemented twice? 96

Challenges in the Use of FoundationOne CDx Cancer Genomic Profile as Companion Diagnostics

Timing issues with FoundationOne CDx **Cancer Genomic Profile as Companion Diagnostics**

Take Home Messages

- 1. FoundationOne CDx is now available under the National Health Insurance scheme in Japan.
- 2. The time of Precision Medicine has come.
- 3. Further efforts are needed to bring an optimized treatment to patients faster.

Thank you.

Disclaimer

This presentation is for the purpose of this information meeting only. Any unauthorized copy, reprint or other use of this material is prohibited.

This presentation includes information regarding pharmaceuticals (including products under development), however, the information is not intended as any advertisement and/or medical advice.

Contacts: Corporate Communications Dept.

```
Media Relations Group
```

Tel: +81 (0)3-3273-0881 Fax: +81 (0)3-3281-6607 e-mail: pr@chugai-pharm.co.jp

```
Tomoko Shimizu, Hiroshi Araki, Chisato Miyoshi, Yayoi Yamada, Shumpei Yokoyama
```

Investor Relations Group

Tel: +81 (0)3-3273-0554 Fax: +81 (0)3-3281-6607 e-mail: ir@chugai-pharm.co.jp

Toshiya Sasai, Takayuki Sakurai, Tomoyuki Shimamura, Sachiyo Yoshimura